Jawabannya adalah A karena A,i,u,e,o sama dengan 1,2,3,,4,5SEMOGA MEMBANTU terima kasih kak kakak sehat selalu ya aminn2 Dalam sebuah kotak terdapat 10 gulungan film, dan diketahui bahwa 3 diantaranya rusak. Hitung peluang bila 2 buah gulungan film rusak diambil acak satu persatu secara berurutan. Jawab: Misal A: peristiwa terambil gulungan pertama rusak B: peristiwa terambil gulungan kedua rusak Maka peluang kedua gulungan rusak adalah : = 1/15 14 ο»ΏKelas 7 SMPOPERASI DAN FAKTORISASI BENTUK ALJABAROperasi Pecahan Bentuk AljabarDikatehui bahwa 1 - 1/31 - 1/41 - 1/51 - 1/6 ... 1 - t/20151 - t/2016 = n - 2013/2016 Nilai n adalah ... a. 1/2 b. 1 c. 2013/2016 d. 2015/2016Operasi Pecahan Bentuk AljabarOPERASI DAN FAKTORISASI BENTUK ALJABARALJABARMatematikaRekomendasi video solusi lainnya0305Jika 3x - 1/x^2 - 9 = a/x + 3 + b/x - 3 maka nila...0158Jika x /=/ 1 dan x /=/ -3, maka hasil kali 9 - x^2/2 -...0203Bentuk sederhana dari x^3 - 3x - 9 / 4x^2 - 9 adalah....0110x / x-1 4x / 8x-8 = ...Teks videosini kau miliki soal yang perintahnya diketahui bahwa 1 min 1 per 3 dikali 1 per 4 dikali 1 min 1 per 5 dikali 1 min 1 per 6 dan seterusnya per 2015 kali 1 Min t f 2016 = n Min 2013/2016 nomor dengan Sorry nih Kecamatan 1 Min sepertiga adalah 2 per 300 per 4 adalah 3 atau 45 adalah 4 per 55 per 6 dan seterusnya sehingga ada pola di sini di mana 6 per 7 + 1 Min menjadi 2014 ini menjadi 2015-2016 sebagai yang terakhir sehingga jika kita tulis bisa menjadi seperti bentuk ini2 per 3 dikali 3 per 4 dikali 4 per 5 * 2015 dibagi 2016 = n ini 2013-2016 Kuningan di sini ada beberapa kan ada 34 dan 45 dan 5 yang ada di dan seterusnya ini 2015 hilang dan yang tersisa adalah 2 per 16 = n Min 2013 dibagi 2016 kita dapatkan n = 2013 ditambah 2 per 2016/2015 2016 Itu jawaban yangsampai jumpa di Pertanyaan selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
3 12/07/2018 6:59 MA-1223 Aljabar Linear 3 Transformasi Linear Misalkan V dan W adalah ruang vektor, T : V W dinamakan transformasi linear, jika untuk setiap dan berlaku : Jika V = W maka T dinamakan operator linear Vba , R baT.1 bTaT aT .2 aT . 4. 12/07/2018 6:59 MA-1223 Aljabar Linear 4 Contoh : Tunjukan bahwa T : R2 R3, dimana merupakan
Diketahui bahwa [1+ 1/2] [1+1/3] [1+1/4] [1+1/5] [1+1/n]= 11. BErapakah nilai n yang memenuhi? a. sederhanakan bilangan yang ada didalam kurung b. amati pola perkalian beberapan bilangan awal c. dengan mengamati, tentuka nilai n yang memenuhi persamaan diatass tolongg dijawabb! A.3/2 4/3 5/4 ... n+1/nb. 1 pembilang = n+1 2 penyebut = n 2 setiap pembilang suku n+1 habis dibagi dengan penyebut suku n kecuali penyebut suku pertama yaitu 2c. Dengan memperhatikan pola didapatkan bahwa untuk mendapatkan hasil pembagian maka pembilang n terakhir harus dibagi dengan penyebut suku pertama 2 sehingga didapatkan persamaan n+1/2=11 n+1=11*2 n+1=22 n=22-1 n=21Jadi n yang memenuhi persamaan diatas adalah 21 Danmelalui proklamasi, menjadi penanda bahwa Indonesia secara resmi menyatakan kemerdekaan dan terbebas dari belenggu penjajahan. Dilihat dari rekam sejarah dan berbagai perjuangan yang dilakukan masyarakat Indonesia dulu, maka seharusnya makna proklamasi ini menjadi suatu hal yang wajib diketahui oleh setiap warga negara Indonesia saatDiketahui bahwa 1-1/31-1/41-1/6...1-t/20151-t/2016=n-2013/2015 nilai n adalah jawab pake cara Diketahui bahwa 1 β 1/31 β 1/41 β 1/6 ... 1 β t/20151 β t/2016 = n β 2013/2015. Nilai n adalah 2015/2016. Kemungkinan ada kesalahan soal, seharusnya soalnya sebagai berikut 1 β 1/31 β 1/4 1 β 1/51 β 1/6 ... 1 β 1/20151 β 1/2016 = n β 2013/2016 Ini merupakan salah satu soal uji kompetensi 3 halaman 242 nomor 16 Pembahasan 1 β 1 β 1 β 1 β β¦ 1 β 1 β = n β β¦ = n β β¦ = n β = n β = n = n Jawaban D Pelajari lebih lanjut Contoh soal lain tentang aljabar Bentuk aljabar dalam soal cerita Koefisien 2a β b + 3c Penjumlahan aljabar - Detil Jawaban Kelas 7 Mapel Matematika Kategori Bentuk Aljabar Kode Kata Kunci Diketahui bahwa 1 β 1/31 β 1/41 β 1/6
Diketahuibahwa jarak antara garis gelap pertama di sebelah kiri ke garis gelap pertama di sebelah kanan adalah 7,2 mm panjang gelombang berkas cahaya adalah. 180 mm; 270 mm; 360 mm; 720 mm; 1.800 mm; PEMBAHASAN : Diketahui d = 0.01 mm = 1,0 x 10-5 m L = 20 = 0,2 m m = 1 y = 7,2 mm = 7,2 X10-3 m
Adik-adik terkasih, hari ini kita mau belajar tentang vektor. Siapkan notes dan pensil kalian.. jangan lupa stabillo untuk menandai rumus-rumus pentingnya.. selamat belajar..Kalian bisa juga pelajari latihan soal ini melalui chanel youtube ajar hitung. Kalian bisa langsung klik video link berikut ini 1. Diketahui titik A2, 7, 8; B-1, 1, -1; C0, 3, 2. Jika AB β wakil u β dan BC β wakil v β maka proyeksi orthogonal vektor u β dan v β adalah ... PEMBAHASANRumus untuk mencari proyeksi orthogonal vektor u β dan v β adalahMari, kita cuss kerjakan soalnyaProyeksi orthogonal vektor u β dan v β adalah JAWABAN A 2. Diketahui vektor dengan 0 < a < 8. Nilai maksimum adalah ...a. 108b. 17c. 15d. 6e. 1PEMBAHASAN a β 6a β 1 = 0 a = 6 dan a = 1 - Untuk a = 6, maka- Untuk a = 1, makaJadi, nilai maksimumnya adalah B 3. Diketahui vektor . Jika vektor u β tegak lurus pada v β maka nilai a adalah...a. -1b. 0c. 1d. 2e. 3PEMBAHASAN a β 1a β 1 = 0 a = 1JAWABAN C 4. Diketahui vektor-vektor . Sudut antara vektor u β dan v β adalah ...PEMBAHASANSoal ini dapat kita kerjakan dengan rumus perkalian skalar, misalnya vektor a dan vektor b, maka perkalian skalarnya Misal, sudut antara u β dan v β adalah Ξ±, makaJAWABAN C 5. a. -20b. -12c. -10d. -8e. -1PEMBAHASANJAWABAN A 6. Diketahui vektor Proyeksi vektor orthogonal vektor a β pada vektor b β adalah ...PEMBAHASANRumus untuk mencari proyeksi orthogonal vektor a β dan b β adalahJAWABAN B 7. Pada persegi panjang OACB, D adalah titik tengah OA dan P titik potong CD dengan diagonal AB. PEMBAHASANPerhatikan persegi panjang OABC berikut CP DP = 2 1JAWABAN B 8. PEMBAHASAN 2-3 + 4m + 12 = 0 -6 + 4m + 2 = 0 4m = 4 m = 1JAWABAN B 9. Diketahui titik P 2, 7, 8 dan Q-1, 1, -1. Titik R membagi PQ di dalam dengan perbandingan 2 1 panjang PR β = ...a. β4b. β6c. β12d. β14e. β56 PEMBAHASANKita gambarkan soal di atas dalam ilustrasi berikut Vektor R = 2 . vektor Q + 1 . vektor P 2 + 1 = 2 -1, 1, -1 + 1 2, 7, 8 3 = -2, 2, -2 + 2, 7, 8 3 = 0, 9, 6 3 = 0, 3, 2Maka, PR β = 2 β 0, 7 β 3, 8 β 2 = 2, 4, 6JAWABAN E 10. Agar kedua vektor segaris, haruslah nilai x β y = ...a. -5b. -2c. 3d. 4e. 6PEMBAHASAN x, 4, 7 = k6, y, 14 x, 4, 7 = 6k, yk, 14k x = 6k 4 = yk 7 = 14k k = 7/14 k = Β½Karena k = Β½, maka x = 6k = = 3, danyk = = 4y = 4 Β½y = 8Maka nilai x β y = 3 β 8 = -5JAWABAN A 11. Diketahui titik A1, -2, -8 dan titik B3, -4, 0. Titik P terletak pada perpanjangan AB sehingga Jika b β merupakan vektor posisi titik P, maka p β = ...PEMBAHASANMari kita ilustrasikan soal tersebut dalam gambarJAWABAN A 12. Jika besar sudut antara vektor p β dan vektor q β adalah 60 derajat, panjang p β dan q β masing-masing 10 dan 6, maka panjang vektor p β - q β = ... a. 4b. 9c. 14d. 2β17e. 2β19PEMBAHASANPanjang vektor p β - q β adalahJAWABAN E 13. a. 4b. 2c. 1d. 0e. -1PEMBAHASANJAWABAN D 14. Agar vektor a = 2i + pj + k dan b = 3i + 2j + 4k saling tegak lurus, maka nilai p adalah...a. 5b. -5c. -8d. -9e. -10PEMBAHASANVektor a dan b saling tegak lurus, maka a . b = 0a . b = 023 + p2 + 14 = 06 + 2p + 4 = 02p = -10p = -5JAWABAN B 15. Vektor yang merupakan proyeksi vektor 3, 1, -1 pada 2, 5, 1 adalah ...a. 3/10 2, 5, 1b. 3 3, 1, -1c. 1/30 2, 5, 1d. 1/3 2, 5, 1e. 1/3 2, 5, -1PEMBAHASANRumus untuk mencari proyeksi vektor a β dan b β adalahJAWABAN D 16. Nilai p agar vektor pi + 2j β 6k dan 4i β 3j + k saling tegak lurus adalah ...a. 6b. 3c. 1d. -1e. -6PEMBAHASANAgar saling tegak lurus maka hasil kali kedua vektor tersebut haruslah nol. pi + 2j β 6k . 4i β 3j + k = 0p4 + 2 -3 + -61 = 04p β 6 β 6 = 04p β 12 = 04p = 12p = 3JAWABAN B 17. PEMBAHASANJAWABAN D 18. Diketahui titik A 5, 1, 3; B 2, -1, -1 dan C 4, 2, -4. Besar